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Quadratic forms

� Linear functions: sum of terms of the form cixi where the
ci are parameters and xi are variables. General form:

c1x1 + · · ·+ cnxn = cTx

� Quadratic functions: sum of terms of the form qijxixj
where qij are parameters and xi are variables. General form:

q11x
2
1 + q12x1x2 + · · ·+ qnnx

2
n (n2 terms)

=

x1...
xn


T q11 . . . q1n

...
. . .

...
qn1 . . . qnn


x1...
xn

 = xTQx
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Quadratic forms

Example: 4x2 + 6xy − 2yz + y 2 − z2xy
z

T 4 6 0
0 1 0
0 −2 −1

xy
z



In general:

xy
z

T  4 p2 q2
p1 1 r2
q1 r1 −1

xy
z

 
p1 + p2 = 6
q1 + q2 = 0
r1 + r2 = −2

Symmetric:

xy
z

T 4 3 0
3 1 −1
0 −1 −1

xy
z


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Quadratic forms

Any quadratic function f (x1, . . . , xn) can be written in the
form xTQx where Q is a symmetric matrix (Q = QT).

Proof: Suppose f (x1, . . . , xn) = xTRx where R is not
symmetric. Since it is a scalar, we can take the transpose:

xTRx =
(
xTRx

)T
= xTRTx

Therefore:

xTRx = 1
2

(
xTRx + xTRTx

)
= xT 1

2
(R + RT)x

So we’re done, because 1
2
(R + RT) is symmetric!
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Orthogonal decomposition

Theorem. Every real symmetric matrix Q = QT ∈ Rn×n

can be decomposed into a product:

Q = UΛUT

where Λ = diag(λ1, . . . , λn) is a real diagonal matrix, and
U ∈ Rn×n is an orthogonal matrix. i.e. it satisfies UTU = I .

This is a useful decomposition because orthogonal matrices
have very nice properties...
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Orthogonal matrices

A matrix U is orthogonal if UTU = I .

� If the columns are U =
[
u1 u2 · · · um

]
, then we have:

UTU =

u
T
1 u1 · · · uT

1 um
...

. . .
...

uT
mu1 · · · uT

mum

 =

1 · · · 0
...

. . .
...

0 · · · 1


Columns of U are mutually orthogonal: uT

i uj = 0 if i 6= j .

� If U is square, U−1 = UT, and UT is also orthogonal.
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Orthogonal matrices

� columns can be rearranged and the factorization stays valid.

[
u1 u2 u3

] λ1 0 0
0 λ2 0
0 0 λ3

uT
1

uT
2

uT
3


= λ1u1u

T
1 + λ2u2u

T
2 + λ3u3u

T
3

=
[
u1 u3 u2

] λ1 0 0
0 λ3 0
0 0 λ2

uT
1

uT
3

uT
2


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Orthogonal matrices

� Orthogonal matrices preserve angle and (2-norm) distance:

(Ux)T(Uy) = xT(UTU)y = xTy

In particular, we have ‖Uz‖ = ‖z‖ for any z .

� If Q = UΛUT, then multiply by ui :

Qui =

u
T
1
...
uT
n


T λ1 · · · 0

...
. . .

...
0 · · · λn


u

T
1
...
uT
n

 ui = λiui

So multiplication by Q simply scales each ui by λi . In other
words: (λi , ui) are the eigenvalue-eigenvector pairs of Q.
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Orthogonal matrix example

Rotation matrices are orthgonal:

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
We can verify this:

RT
θ Rθ =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
Note: RT

θ = R−θ. This holds for 3D rotation matrices also...
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Eigenvalues and eigenvectors

If A ∈ Rn×n and there is a vector v and scalar λ such that

Av = λv

Then v is an eigenvector of A and λ is the corresponding
eigenvalue. Some facts:

� Any square matrix has n eigenvalues.

� Each eigenvalue has at least one corresponding eigenvector.

� In general, eigenvalues & eigenvectors can be complex.

� In general, eigenvectors aren’t orthogonal, and may not
even be linearly independent. i.e. V =

[
v1 · · · vn

]
may

not be invertible. If it is, we say that A is diagonalizable
and then A = VΛV−1. Otherwise, Jordan Canonical Form.

� Symmetric matrices are much simpler!
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Recap: symmetric matrices

� Every symmetric Q = QT ∈ Rn×n has n real eigenvalues λi .

� There exist n mutually orthogonal eigenvectors u1, . . . , un:

Qui = λiui for all i = 1, . . . , n

uT
i uj =

{
1 if i = j

0 if i 6= j

� If we define U =
[
u1 · · · un

]
then UTU = I and

Q = U

λ1 · · · 0
...

. . .
...

0 · · · λn

UT
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Eigenvalue example

Consider the quadratic: 7x2 + 4xy + 6y 2 + 4yz + 5z2.
A simple question: are there values that make this negative?

equivalent to:

xy
z

T 7 2 0
2 6 2
0 2 5

xy
z


Orthogonal decomposition:7 2 0

2 6 2
0 2 5

 =

−
1
3

2
3

2
3

2
3
−1

3
2
3

−2
3
−2

3
1
3


3 0 0

0 6 0

0 0 9


−

1
3

2
3

2
3

2
3
−1

3
2
3

−2
3
−2

3
1
3


T

Eigenvalues are {3, 6, 9}.
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Eigenvalue example
Eigenvalue decomposition:7 2 0

2 6 2
0 2 5

 =

−
1
3

2
3

2
3

2
3
−1

3
2
3

−2
3
−2

3
1
3


3 0 0

0 6 0

0 0 9


−

1
3

2
3

2
3

2
3
−1

3
2
3

−2
3
−2

3
1
3


T

Define new coordinates:pq
r

 =

−
1
3

2
3

2
3

2
3
−1

3
2
3

−2
3
−2

3
1
3


T xy

z


Then we can write:xy

z

T 7 2 0
2 6 2
0 2 5

xy
z

 =

pq
r

T 3 0 0
0 6 0
0 0 9

pq
r


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Eigenvalue example

After some manipulations, we discovered that

7x2 + 4xy + 6y 2 + 4yz + 5z2 = 3p2 + 6q2 + 9r 2

where:
p = −1

3
x + 2

3
y − 2

3
z

q = 2
3
x − 1

3
y − 2

3
z

r = 2
3
x + 2

3
y + 1

3
z

Conclusion: the quadratic can never be negative.
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Recap

Question: Is xTQx ever negative?

Answer: Look at the orthogonal decomposition of Q:

� Q = UΛUT

� Define new coordinates z = UTx .

� xTQx = λ1z
2
1 + · · ·+ λnz

2
n

If all λi ≥ 0, then xTQx ≥ 0 for any x .

If some λk < 0, set zk = 1 and all other zi = 0. Then
find corresponding x using x = Uz , and xTQx < 0.
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Positive definite matrices

For a matrix Q = QT, the following are equivalent:

1. xTQx ≥ 0 for all x ∈ Rn

2. all eigenvalues of Q satisfy λi ≥ 0

A matrix with this property is called positive semidefinite
(PSD). The notation is Q � 0.

Note: When we talk about PSD matrices, we always assume
we’re talking about a symmetric matrix.
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Positive definite matrices

Name Definition Notation

Positive semidefinite all λi ≥ 0 Q � 0
Positive definite all λi > 0 Q � 0
Negative semidefinite all λi ≤ 0 Q � 0
Negative definite all λi < 0 Q ≺ 0
Indefinite everything else (none)

Some properties:

� If P � 0 then −P � 0

� If P � 0 and α > 0 then αP � 0

� If P � 0 and Q � 0 then P + Q � 0

� Every R = RT can be written as R = P − Q for some
appropriate choice of matrices P � 0 and Q � 0.

11-17



Ellipsoids

� For linear constraints, the set of x satisfying cTx = b is a
hyperplane and the set cTx ≤ b is a halfspace.

� For quadratic constraints:

If Q � 0, the set xTQx ≤ b is an ellipsoid.
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Ellipsoids

� By orthogonal decomposition, we can write xTQx = zTΛz
where we defined the new coordinates z = UTx .

� The set of x satisfying xTQx ≤ 1 corresponds to the set of
z satisfying λ1z

2
1 + · · ·+ λnz

2
n ≤ 1.

� If Q � 0, then λi > 0. In the z coordinates, this is a
stretched sphere (ellipsoid). In the zi direction, it is
stretched by 1√

λi
.

� Since x = Uz , and this transformation preserves angles and
distances (think of it as a rotation), then in the xi
coordinates, it is a rotated ellipsoid.

� The principal axes (the zi directions) map to the ui
directions after the rotation.
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Ellipsoids

Plot of the region

3p2 + 6q2 + 9r 2 ≤ 1

Ellipse axes are in the
directions e1, e2, e3

Plot of the region

7x2 + 4xy + 6y 2 + 4yz + 5z2 ≤ 1

Ellipse axes are in the
directions u1, u2, u3
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Norm representation

If Q � 0 we can define the matrix square root:

1. Let Q = UΛUT be an orthogonal decomposition

2. Let Λ1/2 = diag(
√
λ1, . . . ,

√
λn)

3. Define Q1/2 = UΛ1/2UT.

We have the property that Q1/2 is symmetric and
Q1/2Q1/2 = Q. Also:

xTQx = (Q1/2x)T(Q1/2x) =
∥∥Q1/2x

∥∥2
Therefore: xTQx ≤ b ⇐⇒

∥∥Q1/2x
∥∥2 ≤ b
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