11. Quadratic forms and ellipsoids

- Quadratic forms
- Orthogonal decomposition
- Positive definite matrices
- Ellipsoids

Quadratic forms

- Linear functions: sum of terms of the form $c_{i} x_{i}$ where the c_{i} are parameters and x_{i} are variables. General form:

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}=c^{\top} x
$$

- Quadratic functions: sum of terms of the form $q_{i j} x_{i} x_{j}$ where $q_{i j}$ are parameters and x_{i} are variables. General form:

$$
\begin{aligned}
& q_{11} x_{1}^{2}+q_{12} x_{1} x_{2}+\cdots+q_{n n} x_{n}^{2} \quad\left(n^{2} \text { terms }\right) \\
& \quad=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]^{\top}\left[\begin{array}{ccc}
q_{11} & \cdots & q_{1 n} \\
\vdots & \ddots & \vdots \\
q_{n 1} & \cdots & q_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x^{\top} Q x
\end{aligned}
$$

Quadratic forms

Example: $4 x^{2}+6 x y-2 y z+y^{2}-z^{2}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\top}\left[\begin{array}{ccc}
4 & 6 & 0 \\
0 & 1 & 0 \\
0 & -2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& \text { In general: }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\top}\left[\begin{array}{ccc}
4 & p_{2} & q_{2} \\
p_{1} & 1 & r_{2} \\
q_{1} & r_{1} & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left\{\begin{array}{l}
p_{1}+p_{2}=6 \\
q_{1}+q_{2}=0 \\
r_{1}+r_{2}=-2
\end{array}\right. \\
& \text { Symmetric: }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\top}\left[\begin{array}{ccc}
4 & 3 & 0 \\
3 & 1 & -1 \\
0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

Quadratic forms

Any quadratic function $f\left(x_{1}, \ldots, x_{n}\right)$ can be written in the form $x^{\top} Q x$ where Q is a symmetric matrix $\left(Q=Q^{\top}\right)$.

Proof: Suppose $f\left(x_{1}, \ldots, x_{n}\right)=x^{\top} R x$ where R is not symmetric. Since it is a scalar, we can take the transpose:

$$
x^{\top} R x=\left(x^{\top} R x\right)^{\top}=x^{\top} R^{\top} x
$$

Therefore:

$$
x^{\top} R x=\frac{1}{2}\left(x^{\top} R x+x^{\top} R^{\top} x\right)=x^{\top} \frac{1}{2}\left(R+R^{\top}\right) x
$$

So we're done, because $\frac{1}{2}\left(R+R^{\top}\right)$ is symmetric!

Orthogonal decomposition

Theorem. Every real symmetric matrix $Q=Q^{\top} \in \mathbb{R}^{n \times n}$ can be decomposed into a product:

$$
Q=U \Lambda U^{\top}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a real diagonal matrix, and $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix. i.e. it satisfies $U^{\top} U=I$.

This is a useful decomposition because orthogonal matrices have very nice properties...

Orthogonal matrices

A matrix U is orthogonal if $U^{\top} U=1$.

- If the columns are $U=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{m}\end{array}\right]$, then we have:

$$
U^{\top} U=\left[\begin{array}{ccc}
u_{1}^{\top} u_{1} & \cdots & u_{1}^{\top} u_{m} \\
\vdots & \ddots & \vdots \\
u_{m}^{\top} u_{1} & \cdots & u_{m}^{\top} u_{m}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]
$$

Columns of U are mutually orthogonal: $u_{i}^{\top} u_{j}=0$ if $i \neq j$.

- If U is square, $U^{-1}=U^{\top}$, and U^{\top} is also orthogonal.

Orthogonal matrices

- columns can be rearranged and the factorization stays valid.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\top} \\
u_{2}^{\top} \\
u_{3}^{\top}
\end{array}\right]} \\
& \quad=\lambda_{1} u_{1} u_{1}^{\top}+\lambda_{2} u_{2} u_{2}^{\top}+\lambda_{3} u_{3} u_{3}^{\top} \\
& \quad=\left[\begin{array}{lll}
u_{1} & u_{3} & u_{2}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{3} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\top} \\
u_{3}^{\top} \\
u_{2}^{\top}
\end{array}\right]
\end{aligned}
$$

Orthogonal matrices

- Orthogonal matrices preserve angle and (2-norm) distance:

$$
(U x)^{\top}(U y)=x^{\top}\left(U^{\top} U\right) y=x^{\top} y
$$

In particular, we have $\|U z\|=\|z\|$ for any z.

- If $Q=U \wedge U^{\top}$, then multiply by u_{i} :

$$
Q u_{i}=\left[\begin{array}{c}
u_{1}^{\top} \\
\vdots \\
u_{n}^{\top}
\end{array}\right]^{\top}\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
u_{1}^{\top} \\
\vdots \\
u_{n}^{\top}
\end{array}\right] u_{i}=\lambda_{i} u_{i}
$$

So multiplication by Q simply scales each u_{i} by λ_{i}. In other words: $\left(\lambda_{i}, u_{i}\right)$ are the eigenvalue-eigenvector pairs of Q.

Orthogonal matrix example

Rotation matrices are orthgonal:

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

We can verify this:

$$
\begin{aligned}
R_{\theta}^{\top} R_{\theta} & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
\sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Note: $R_{\theta}^{\top}=R_{-\theta}$. This holds for $3 D$ rotation matrices also...

Eigenvalues and eigenvectors

If $A \in \mathbb{R}^{n \times n}$ and there is a vector v and scalar λ such that

$$
A v=\lambda v
$$

Then v is an eigenvector of A and λ is the corresponding eigenvalue. Some facts:

- Any square matrix has n eigenvalues.
- Each eigenvalue has at least one corresponding eigenvector.
- In general, eigenvalues \& eigenvectors can be complex.
- In general, eigenvectors aren't orthogonal, and may not even be linearly independent. i.e. $V=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$ may not be invertible. If it is, we say that A is diagonalizable and then $A=V \wedge V^{-1}$. Otherwise, Jordan Canonical Form.
- Symmetric matrices are much simpler!

Recap: symmetric matrices

- Every symmetric $Q=Q^{\top} \in \mathbb{R}^{n \times n}$ has n real eigenvalues λ_{i}.
- There exist n mutually orthogonal eigenvectors u_{1}, \ldots, u_{n} :

$$
\begin{aligned}
Q u_{i} & =\lambda_{i} u_{i} \quad \text { for all } i=1, \ldots, n \\
u_{i}^{\top} u_{j} & = \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases}
\end{aligned}
$$

- If we define $U=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ then $U^{\top} U=I$ and

$$
Q=U\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] U^{\top}
$$

Eigenvalue example

Consider the quadratic: $7 x^{2}+4 x y+6 y^{2}+4 y z+5 z^{2}$.
A simple question: are there values that make this negative?

$$
\text { equivalent to: }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\top}\left[\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]
$$

Orthogonal decomposition:

$$
\left[\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]^{\top}
$$

Eigenvalues are $\{3,6,9\}$.

Eigenvalue example

Eigenvalue decomposition:

$$
\left[\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]^{\top}
$$

Define new coordinates:

$$
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]^{\top}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Then we can write:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\top}\left[\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]^{\top}\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]
$$

Eigenvalue example

After some manipulations, we discovered that

$$
7 x^{2}+4 x y+6 y^{2}+4 y z+5 z^{2}=3 p^{2}+6 q^{2}+9 r^{2}
$$

where:

$$
\begin{aligned}
p & =-\frac{1}{3} x+\frac{2}{3} y-\frac{2}{3} z \\
q & =\frac{2}{3} x-\frac{1}{3} y-\frac{2}{3} z \\
r & =\frac{2}{3} x+\frac{2}{3} y+\frac{1}{3} z
\end{aligned}
$$

Conclusion: the quadratic can never be negative.

Recap

Question: Is $x^{\top} Q x$ ever negative?
Answer: Look at the orthogonal decomposition of Q :

- $Q=U \wedge U^{\top}$
- Define new coordinates $z=U^{\top} x$.
- $x^{\top} Q x=\lambda_{1} z_{1}^{2}+\cdots+\lambda_{n} z_{n}^{2}$

$$
\text { If all } \lambda_{i} \geq 0 \text {, then } x^{\top} Q x \geq 0 \text { for any } x
$$

If some $\lambda_{k}<0$, set $z_{k}=1$ and all other $z_{i}=0$. Then find corresponding x using $x=U z$, and $x^{\top} Q x<0$.

Positive definite matrices

For a matrix $Q=Q^{\top}$, the following are equivalent:

1. $x^{\top} Q x \geq 0$ for all $x \in \mathbb{R}^{n}$
2. all eigenvalues of Q satisfy $\lambda_{i} \geq 0$

A matrix with this property is called positive semidefinite (PSD). The notation is $Q \succeq 0$.

Note: When we talk about PSD matrices, we always assume we're talking about a symmetric matrix.

Positive definite matrices

Name	Definition	Notation
Positive semidefinite	all $\lambda_{i} \geq 0$	$Q \succeq 0$
Positive definite	all $\lambda_{i}>0$	$Q \succ 0$
Negative semidefinite	all $\lambda_{i} \leq 0$	$Q \preceq 0$
Negative definite	all $\lambda_{i}<0$	$Q \prec 0$
Indefinite	everything else	(none)

Some properties:

- If $P \succeq 0$ then $-P \preceq 0$
- If $P \succeq 0$ and $\alpha>0$ then $\alpha P \succeq 0$
- If $P \succeq 0$ and $Q \succeq 0$ then $P+Q \succeq 0$
- Every $R=R^{\top}$ can be written as $R=P-Q$ for some appropriate choice of matrices $P \succeq 0$ and $Q \succeq 0$.

Ellipsoids

- For linear constraints, the set of x satisfying $c^{\top} x=b$ is a hyperplane and the set $c^{\top} x \leq b$ is a halfspace.
- For quadratic constraints:

$$
\text { If } Q \succ 0 \text {, the set } x^{\top} Q x \leq b \text { is an ellipsoid. }
$$

Ellipsoids

- By orthogonal decomposition, we can write $x^{\top} Q x=z^{\top} \wedge z$ where we defined the new coordinates $z=U^{\top} x$.
- The set of x satisfying $x^{\top} Q x \leq 1$ corresponds to the set of z satisfying $\lambda_{1} z_{1}^{2}+\cdots+\lambda_{n} z_{n}^{2} \leq 1$.
- If $Q \succ 0$, then $\lambda_{i}>0$. In the z coordinates, this is a stretched sphere (ellipsoid). In the z_{i} direction, it is stretched by $\frac{1}{\sqrt{\lambda_{i}}}$.
- Since $x=U z$, and this transformation preserves angles and distances (think of it as a rotation), then in the x_{i} coordinates, it is a rotated ellipsoid.
- The principal axes (the z_{i} directions) map to the u_{i} directions after the rotation.

Ellipsoids

Plot of the region

$$
3 p^{2}+6 q^{2}+9 r^{2} \leq 1
$$

Ellipse axes are in the directions e_{1}, e_{2}, e_{3}

Plot of the region

$$
7 x^{2}+4 x y+6 y^{2}+4 y z+5 z^{2} \leq 1
$$

Ellipse axes are in the directions u_{1}, u_{2}, u_{3}

Norm representation

If $Q \succeq 0$ we can define the matrix square root:

1. Let $Q=U \wedge U^{\top}$ be an orthogonal decomposition
2. Let $\Lambda^{1 / 2}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right)$
3. Define $Q^{1 / 2}=U \Lambda^{1 / 2} U^{\top}$.

We have the property that $Q^{1 / 2}$ is symmetric and $Q^{1 / 2} Q^{1 / 2}=Q$. Also:

$$
x^{\top} Q x=\left(Q^{1 / 2} x\right)^{\top}\left(Q^{1 / 2} x\right)=\left\|Q^{1 / 2} x\right\|^{2}
$$

Therefore: $x^{\top} Q x \leq b \quad \Longleftrightarrow \quad\left\|Q^{1 / 2} x\right\|^{2} \leq b$

